185-0822-7772
四川海輝千訊網(wǎng)絡(luò)科技有限公司
地址:成都雙流區(qū)東升街道藏衛(wèi)路南二段699號附6號1層
電話:185-0822-7772(王)  
189-8000-5257(佘)
郵箱:ibfs@qq.com
成都弱電公司訊:
無人駕駛作為一項(xiàng)革命性的科技越來越火,尤其以Google無人駕駛為標(biāo)桿。但是自動駕駛背后有哪些關(guān)鍵性技術(shù)?這些技術(shù)發(fā)展的現(xiàn)狀和難點(diǎn)有哪些?
自動駕駛汽車又稱無人駕駛汽車,它實(shí)際是一種輪式移動機(jī)器人。自動駕駛汽車從根本上改變了傳統(tǒng)的“人——車——路”閉環(huán)控制方式,將無法用規(guī)則嚴(yán)格約束的駕駛員從該閉環(huán)系統(tǒng)中請出去,從而大大提高了交通系統(tǒng)的效率和平安性,是汽車工業(yè)發(fā)展的革命性產(chǎn)物。
從20世紀(jì)80年代開始人類就展開了車輛自主行駛的研究。美國是世界上研究自動駕駛汽車最早、水平最高的國家之一。其中谷歌無人駕駛汽車影響力最為廣泛,也是技術(shù)水平最成熟的公司之一。谷歌宣稱其無人駕駛汽車已經(jīng)在公路上平安行駛160多萬公里,期間沒有發(fā)生過任何嚴(yán)重的碰撞事故。但是能做到如谷歌自動駕駛車技術(shù)水平的公司寥寥無幾,可見其關(guān)鍵技術(shù)門檻是比較高的。
下面談?wù)勛詣玉{駛汽車中幾個關(guān)鍵技術(shù)。
環(huán)境感知
傳感器探測環(huán)境信息,只是將探測的物理量進(jìn)行了有序排列與存儲。此時計(jì)算機(jī)并不知道這些數(shù)據(jù)映射到真實(shí)環(huán)境中是什么物理含義。因此需要通過適當(dāng)?shù)乃惴◤奶綔y得到的數(shù)據(jù)中挖掘出我們關(guān)注的數(shù)據(jù)并賦予物理含義,從而達(dá)到感知環(huán)境的目的。
好比我們在駕駛車輛時眼睛看前方,可以從環(huán)境中分辨出我們當(dāng)前行駛的車道線。若要讓機(jī)器獲取車道線信息,需要攝像頭獲取環(huán)境影像,影像本身并不具備映射到真實(shí)環(huán)境中的物理含義,此時需要通過算法從該影像中找到能映射到真實(shí)車道線的影像部分,賦予其車道線含義。
自動駕駛車輛感知環(huán)境的傳感器繁多,常用的有:攝像頭、激光掃描儀、毫米波雷達(dá)以及超聲波雷達(dá)等。
針對分歧的傳感器,采用的感知算法會有所區(qū)別,跟傳感器感知環(huán)境的機(jī)理是有關(guān)系的。每一種傳感器感知環(huán)境的能力和受環(huán)境的影響也各不相同。好比攝像頭在物體辨認(rèn)方面有優(yōu)勢,但是距離信息比較欠缺,基于它的辨認(rèn)算法受天氣、光線影響也非常明顯。激光掃描儀及毫米波雷達(dá),能精確測得物體的距離,但是在辨認(rèn)物體方面遠(yuǎn)弱于攝像頭。同一種傳感器因其規(guī)格參數(shù)不一樣,也會呈現(xiàn)分歧的特性。長距離毫米波雷達(dá)探測距離長達(dá)200米,角度范圍較小(±10度),而中距離雷達(dá)探測距離為60米,角度范圍較大(±45度)。
為了發(fā)揮各自傳感器的優(yōu)勢,彌補(bǔ)它們的不足,傳感器信息融合是未來的趨勢。事實(shí)上,已經(jīng)有零部件供應(yīng)商做過此事,好比德爾福開發(fā)的攝像頭與毫米波雷達(dá)組合感知模塊已應(yīng)用到量產(chǎn)車上。
行為規(guī)劃
說到行為規(guī)劃也許大家會比較陌生,我們可以先從路徑規(guī)劃開始講講。路徑規(guī)劃的概念在機(jī)器人中使用比較普遍,一般定義為:
在具有障礙物的環(huán)境中,按照一定的評價(jià)尺度,尋找一條從起始狀態(tài)到目標(biāo)狀態(tài)的無碰撞路徑。對于無人車來講,若確定了目標(biāo)地點(diǎn)的車輛位姿,車輛具體以怎樣一條運(yùn)動路徑行駛到目標(biāo)地點(diǎn),即為路徑規(guī)劃。
路徑規(guī)劃其實(shí)包含大范圍不考慮運(yùn)動細(xì)節(jié)的全局路徑規(guī)劃以及具體到運(yùn)動軌跡的局部路徑規(guī)劃。
為了將無人車的局部路徑進(jìn)行形象地歸類、分析,引入了“行為”的概念。車輛在城市道路自主行駛時,它應(yīng)具備車道保持、變換車道、路口直行、路口拐彎、掉頭、繞障、智能啟停、自動泊車等駕駛行為。行為的有序排列及有機(jī)銜接,方可完成整個自動駕駛?cè)蝿?wù)。
“駕駛行為”是局部路徑中細(xì)分出來的行駛單元,當(dāng)然它的劃分應(yīng)該是多樣性的,主要取決于算法實(shí)現(xiàn)。
行為與行為之間會保持相對獨(dú)立性,但是行為切換時又具有平滑過渡的特征。車輛行駛中,何時采用何種行為,即為行為規(guī)劃(也有稱之為行為決策)。
單個駕駛行為,其實(shí)目前很多整車廠或科研院所做了相當(dāng)多的工作,甚至有的已經(jīng)推向市場。如特斯拉的車道保持、自動變道、跟車功能,這些都是駕駛行為的具體實(shí)例。但是這些行為如何切換,如何過渡,特斯拉將其交給了人。自適應(yīng)巡航、車道保持、自動變道,都需要駕駛員手動操作后托管給機(jī)器,并隨時準(zhǔn)備接管駕駛。
人在同樣的工況中駕駛車輛,產(chǎn)生的駕駛行為序列是不一樣的,甚至同一行為的具體執(zhí)行區(qū)別也較大,這跟人的性格、平安意識和當(dāng)時的心情等有關(guān)系。好比,我們在趕時間時,變道次數(shù)會增多,超車的平安系數(shù)會降低;新手開車時,變道時機(jī)把握不好,經(jīng)常急剎車等;甚至在面臨事故時,是選擇撞車還是撞旁邊的人,分歧的人可能有分歧的選擇。這些很多屬于人的高級思維,也涉及到法律、倫理道德,目前機(jī)器還很難達(dá)到這個層次。但是人工智能或許是解決這一問題的突破口。